Some equalities and inequalities for covariance matrices of estimators under linear model
Yongge Tian ()
Statistical Papers, 2017, vol. 58, issue 2, No 9, 467-484
Abstract:
Abstract Best linear unbiased estimators (BLUEs) of unknown parameters under linear models have minimum covariance matrices in the Löwner partial ordering among all linear unbiased estimators of the unknown parameters. Hence, BLUEs’ covariance matrices are usually used as a criterion to compare optimality with other types of estimator. During this work, people often need to establish certain equalities and inequalities for BLUEs’ covariance matrices, and use them in statistical inference of regression models. This paper aims at establishing some analytical formulas for calculating ranks and inertias of BLUEs’ covariance matrices under general linear model, and using these formulas in the comparison of covariance matrices of BLUEs with other types of estimator. This is in fact a mathematical work, and some new tools in matrix analysis are essentially utilized.
Keywords: General linear model; BLUE; Covariance matrix; Rank; Inertia; Löwner partial ordering; 62H12; 62J05; 62J10 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-015-0707-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:58:y:2017:i:2:d:10.1007_s00362-015-0707-x
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-015-0707-x
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().