EconPapers    
Economics at your fingertips  
 

SYMARMA: a new dynamic model for temporal data on conditional symmetric distribution

Vinicius Q. S. Maior () and Francisco José A. Cysneiros ()
Additional contact information
Vinicius Q. S. Maior: UFPE
Francisco José A. Cysneiros: UFPE

Statistical Papers, 2018, vol. 59, issue 1, No 4, 75-97

Abstract: Abstract Gaussian models of time series, ARMA, have been widely used in the literature. Benjamin et al. (J Am Stat Assoc 98:214–223, 2003) extended these models to the exponential family distributions. Also in that direction, Rocha and Cribari-Neto (Test 18:529–545, 2009) proposed a time series model for the class of beta distributions. In this paper, we develop an autoregressive and moving average symmetric model, named SYMARMA, which is a dynamic model for random variables belonging to the class of symmetric distributions including also a set of regressors. We discuss methods for parameter estimation, hypothesis testing and forecasting. In particular, we provide closed-form expressions for the score function and Fisher information matrix. Robust study is presented based on influence function. We conduct simulation studies to evaluate the consistency and asymptotic normality of the conditional maximum likelihood estimator for the model parameters. An application with real data is presented and discussed.

Keywords: Conditional maximum likelihood; Outlier; Symmetric distributions; Time series (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-016-0753-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:59:y:2018:i:1:d:10.1007_s00362-016-0753-z

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-016-0753-z

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:59:y:2018:i:1:d:10.1007_s00362-016-0753-z