EconPapers    
Economics at your fingertips  
 

Applications of hyperellipsoidal prediction regions

David J. Olive ()
Additional contact information
David J. Olive: Southern Illinois University

Statistical Papers, 2018, vol. 59, issue 3, No 4, 913-931

Abstract: Abstract Olive (Internat J Stat Probab 2:90–100, 2013) developed a large sample $$100(1-\delta )\%$$ 100 ( 1 - δ ) % nonparametric prediction region for a future $$m \times 1$$ m × 1 test vector $$\varvec{y}_f$$ y f given past training data $$\varvec{y}_1,\ldots , \varvec{y}_n$$ y 1 , … , y n . Consider predicting an $$m \times 1$$ m × 1 future test response vector $$\varvec{y}_f$$ y f , given $$\varvec{x}_f$$ x f and past training data $$(\varvec{x}_1,\varvec{y}_1),\ldots , (\varvec{x}_n,\varvec{y}_n)$$ ( x 1 , y 1 ) , … , ( x n , y n ) . For the multivariate linear regression model $$\varvec{y}_i = \varvec{B}^T \varvec{x}_i + \varvec{\epsilon }_i$$ y i = B T x i + ϵ i , let the pseudodata $$\varvec{w}_i = \hat{\varvec{y}}_f + \hat{\varvec{\epsilon }}_i$$ w i = y ^ f + ϵ ^ i for $$i = 1,\ldots , n$$ i = 1 , … , n where the $$\hat{\varvec{\epsilon }}_i$$ ϵ ^ i are the residual vectors. Under mild regularity conditions, applying the (Olive in Internat J Stat Probab 2:90–100, 2013) prediction region to the pseudodata gives a large sample $$100(1-\delta )\%$$ 100 ( 1 - δ ) % nonparametric prediction region for $$\varvec{y}_f$$ y f . Suppose there is an $$m \times 1$$ m × 1 statistic $$T_n$$ T n such that $$\sqrt{n} (T_n - \varvec{\mu }) \mathop {\rightarrow }\limits ^{D} N_m(\varvec{0}, \varvec{\Sigma }_T)$$ n ( T n - μ ) → D N m ( 0 , Σ T ) . Under regularity conditions, applying the (Olive in Internat J Stat Probab 2:90–100, 2013) prediction region to the bootstrap sample $$T^*_1,\ldots , T^*_B$$ T 1 ∗ , … , T B ∗ gives a large sample $$100(1-\delta )\%$$ 100 ( 1 - δ ) % confidence region for the parameter vector $$\varvec{\mu }$$ μ .

Keywords: Bagging; Bootstrap; Highest density region; Prediction interval; Multivariate linear regression (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s00362-016-0796-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:59:y:2018:i:3:d:10.1007_s00362-016-0796-1

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-016-0796-1

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:59:y:2018:i:3:d:10.1007_s00362-016-0796-1