Shrinkage for covariance estimation: asymptotics, confidence intervals, bounds and applications in sensor monitoring and finance
Ansgar Steland ()
Additional contact information
Ansgar Steland: RWTH Aachen University
Statistical Papers, 2018, vol. 59, issue 4, No 10, 1462 pages
Abstract:
Abstract When shrinking a covariance matrix towards (a multiple) of the identity matrix, the trace of the covariance matrix arises naturally as the optimal scaling factor for the identity target. The trace also appears in other context, for example when measuring the size of a matrix or the amount of uncertainty. Of particular interest is the case when the dimension of the covariance matrix is large. Then the problem arises that the sample covariance matrix is singular if the dimension is larger than the sample size. Another issue is that usually the estimation has to based on correlated time series data. We study the estimation of the trace functional allowing for a high-dimensional time series model, where the dimension is allowed to grow with the sample size—without any constraint. Based on a recent result, we investigate a confidence interval for the trace, which also allows us to propose lower and upper bounds for the shrinkage covariance estimator as well as bounds for the variance of projections. In addition, we provide a novel result dealing with shrinkage towards a diagonal target. We investigate the accuracy of the confidence interval by a simulation study, which indicates good performance, and analyze three stock market data sets to illustrate the proposed bounds, where the dimension (number of stocks) ranges between 32 and 475. Especially, we apply the results to portfolio optimization and determine bounds for the risk associated to the variance-minimizing portfolio.
Keywords: Central limit theorem; High-dimensional statistics; Finance; Shrinkage; Strong approximation; Portfolio risk; Risk; Time series (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-018-1040-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:59:y:2018:i:4:d:10.1007_s00362-018-1040-y
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-018-1040-y
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().