Clustering dependent observations with copula functions
F. Marta L. Di Lascio and
Simone Giannerini
Statistical Papers, 2019, vol. 60, issue 1, No 3, 35-51
Abstract:
Abstract This paper deals with the problem of clustering dependent observations according to their underlying complex generating process. Di Lascio and Giannerini (Journal of Classification 29(1):50–75, 2012) introduced the CoClust, a clustering algorithm based on copula function that achieves the task but has a high computational burden. Moreover, the CoClust automatically allocates all the observations to the clusters; thus, it cannot discard potentially irrelevant observations. In this paper we introduce an improved version of the CoClust that both overcomes these issues and performs better in many respects. By means of a Monte Carlo study we investigate the features of the algorithm and show that it improves consistently with respect to the old CoClust. The validity of our proposal is also supported by applications to real data sets of human breast tumor samples for which the algorithm provides a meaningful biological interpretation. The new algorithm is implemented and made available through an updated version of the R package CoClust.
Keywords: Copula function; Multivariate dependence structure; Clustering; Biological tumor sample; 62H30; 62H20; 62P10 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-016-0822-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
Working Paper: Clustering dependent observations with copula functions (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0822-3
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-016-0822-3
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().