EconPapers    
Economics at your fingertips  
 

Using SeDuMi to find various optimal designs for regression models

Weng Kee Wong (), Yue Yin and Julie Zhou
Additional contact information
Weng Kee Wong: University of California
Yue Yin: University of Victoria
Julie Zhou: University of Victoria

Statistical Papers, 2019, vol. 60, issue 5, No 8, 1583-1603

Abstract: Abstract We introduce a powerful and yet seldom used numerical approach in statistics for solving a broad class of optimization problems where the search space is discretized. This optimization tool is widely used in engineering for solving semidefinite programming (SDP) problems and is called self-dual minimization (SeDuMi). We focus on optimal design problems and demonstrate how to formulate A-, A $$_s$$ s -, c-, I-, and L-optimal design problems as SDP problems and show how they can be effectively solved by SeDuMi in MATLAB. We also show the numerical approach is flexible by applying it to further find optimal designs based on the weighted least squares estimator or when there are constraints on the weight distribution of the sought optimal design. For approximate designs, the optimality of the SDP-generated designs can be verified using the Kiefer–Wolfowitz equivalence theorem. SDP also finds optimal designs for nonlinear regression models commonly used in social and biomedical research. Several examples are presented for linear and nonlinear models.

Keywords: Approximate design; Convex optimization; Equivalence theorem; Nonlinear model; Weighted least squares; 62K05; 62K20 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00362-017-0887-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:60:y:2019:i:5:d:10.1007_s00362-017-0887-7

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-017-0887-7

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:60:y:2019:i:5:d:10.1007_s00362-017-0887-7