Mixed Poisson INAR(1) processes
Wagner Barreto-Souza ()
Additional contact information
Wagner Barreto-Souza: Universidade Federal de Minas Gerais
Statistical Papers, 2019, vol. 60, issue 6, No 14, 2119-2139
Abstract:
Abstract Overdispersion is a phenomenon commonly observed in count time series. Since Poisson distribution is equidispersed, the INteger-valued AutoRegressive (INAR) process with Poisson marginals is not adequate for modelling overdispersed counts. To overcome this problem, in this paper we propose a general class of first-order INAR processes for modelling overdispersed count time series. The proposed INAR(1) processes have marginals belonging to a class of mixed Poisson distributions, which are overdispersed. With this, our class of overdispersed count models have the known negative binomial INAR(1) process as particular case and open the possibility of introducing new INAR(1) processes, such as the Poisson-inverse Gaussian INAR(1) model, which is discussed here with some details. We establish a condition to our class of overdispersed INAR processes is well-defined and study some statistical properties. We propose estimators for the parameters and establish their consistency and asymptotic normality. A small Monte Carlo simulation to evaluate the finite-sample performance of the proposed estimators is presented and one application to a real data set illustrates the usefulness of our proposed overdispersed count processes.
Keywords: Autocorrelation; Count process; Markov chain; Poisson-inverse Gaussian distribution; Overdispersion (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-017-0912-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:60:y:2019:i:6:d:10.1007_s00362-017-0912-x
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-017-0912-x
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().