EconPapers    
Economics at your fingertips  
 

Multiple mediation analysis for interval-valued data

Antonio Calcagnì (), Luigi Lombardi, Lorenzo Avanzi and Eduardo Pascali
Additional contact information
Antonio Calcagnì: University of Trento
Luigi Lombardi: University of Trento
Lorenzo Avanzi: University of Trento
Eduardo Pascali: University of Salento

Statistical Papers, 2020, vol. 61, issue 1, No 18, 347-369

Abstract: Abstract Mediation analysis is an important statistical approach to evaluate the relationships among observed variables. The most commonly used models for mediation analysis handle single-valued variables. However, there are several circumstances (e.g., dimensionality reduction of large datasets, clinical patient courses, repeated measures, masked data, uncertain data) in which the collected information can be represented more naturally by means of intervals. In these cases, standard mediation analyses can be ill-suited. Although interval-valued variables can be transformed into standard single-valued variables, such procedures may mask some relevant information provided by intervals. In this article, we present a novel and simple model (IMedA) to perform mediation analysis on interval-valued variables which is based on both the symbolic regression approach and the regression based mediation framework. We also generalize Stolzenberg’s decomposition of effects to cope with interval-valued data. We further introduce a specific variance based decomposition procedure to descriptively evaluate the sizes of such effects. Finally, to better highlight the IMedA features we apply our model to a real case study from behavioral contexts.

Keywords: Interval data; Mediation analysis; Path analysis; Multivariate multiple regression; Work-related burnout (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-017-0940-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:61:y:2020:i:1:d:10.1007_s00362-017-0940-6

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-017-0940-6

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:61:y:2020:i:1:d:10.1007_s00362-017-0940-6