EconPapers    
Economics at your fingertips  
 

Component-wise outlier detection methods for robustifying multivariate functional samples

Francesca Ieva () and Anna Maria Paganoni ()
Additional contact information
Francesca Ieva: Politecnico di Milano
Anna Maria Paganoni: Politecnico di Milano

Statistical Papers, 2020, vol. 61, issue 2, No 4, 595-614

Abstract: Abstract We propose a new method for detecting outliers in multivariate functional data. We exploit the joint use of two different depth measures, and generalize the outliergram to the multivariate functional framework, aiming at detecting and discarding both shape and magnitude outliers. The main application consists in robustifying the reference samples of data, composed by G different known groups to be used, for example, in classification procedures in order to make them more robust. We asses by means of a simulation study the method’s performance in comparison with different outlier detection methods. Finally we consider a real dataset: we classify data minimizing a suitable distance from the center of reference groups. We compare performance of supervised classification on test sets training the algorithm on original dataset and on the robustified one, respectively.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-017-0953-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:61:y:2020:i:2:d:10.1007_s00362-017-0953-1

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-017-0953-1

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:61:y:2020:i:2:d:10.1007_s00362-017-0953-1