Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data
Kangning Wang and
Xiaofei Sun ()
Additional contact information
Kangning Wang: Shandong Technology and Business University
Xiaofei Sun: Shandong Technology and Business University
Statistical Papers, 2020, vol. 61, issue 3, No 3, 967-995
Abstract:
Abstract Efficient estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data is concerned in this paper. To improve estimation efficiency in quantile regression, based on B-spline basis approximation for nonparametric parts, we propose a new estimating function, which can incorporate the correlation structure between repeated measures. In order to reduce computational burdens, the induced smoothing method is used. The new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations based methods. Under mild conditions, the asymptotically normal distribution of the estimators for the parametric components and the optimal convergence rate of the estimators for the nonparametric functions are established. Furthermore, to do variable selection, a smooth-threshold estimating equation is proposed, which can use the correlation structure and select the nonparametric and parametric parts simultaneously. Theoretically, the variable selection procedure works beautifully, including consistency in variable selection and oracle property in estimation. Simulation studies and real data analysis are included to show the finite sample performance.
Keywords: Semiparametric model; Longitudinal data; Basis spline; Quantile regression; Variable selection; Oracle property; 62G05; 62E20; 62J02 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-017-0970-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-017-0970-0
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-017-0970-0
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().