Conditional SIRS for nonparametric and semiparametric models by marginal empirical likelihood
Yi Chu and
Lu Lin ()
Additional contact information
Yi Chu: Shandong University
Lu Lin: Shandong University
Statistical Papers, 2020, vol. 61, issue 4, No 11, 1589-1606
Abstract:
Abstract Dimension reduction is a crucial issue for high-dimensional data analysis. When the correlation among the variables is strong, the original SIRS (Zhu et al. in J Am Stat Assoc 106(496):1464–1475, 2011) may lose efficiency. Under high-dimensional setting, eliminating the bad influence caused by the correlation has become an important issue. Aiming at this issue, we propose a feature screening approach by combining the marginal empirical likelihood with the conditional SIRS. Based on a centralized SIRS, the correlation among the variables is significantly reduced and consequently, the related empirical likelihood is improved remarkably. Moreover, our method is model-free due to the properties of SIRS and empirical likelihood. The proposed method can select important predictors directly without parameter estimation, implying that the method is computationally simple. Under some general conditions, the proposed marginal empirical likelihood ratio is self-studentized. The simulation study shows that compared with other unconditional and conditional methods, our method is competitive and has a great superiority.
Keywords: High-dimensionality; Empirical likelihood; Feature screening; Nonparametric model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-018-0993-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-0993-1
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-018-0993-1
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().