EconPapers    
Economics at your fingertips  
 

Robust dimension reduction using sliced inverse median regression

Eliana Christou ()
Additional contact information
Eliana Christou: University of North Carolina at Charlotte

Statistical Papers, 2020, vol. 61, issue 5, No 1, 1799-1818

Abstract: Abstract Dimension reduction is a useful technique when working with high-dimensional predictors, as meaningful data visualizations and graphical analyses using fewer predictors can be achieved. We propose a new non-iterative and robust against extreme values estimation of the effective dimension reduction (e.d.r) subspace, which is based on the estimation of the conditional median function of the predictors given the response. The existing literature on robust estimation of the e.d.r subspace relies on iterative algorithms, such as the composite quantile minimum average variance estimation and the sliced regression. Compared with these existing robust dimension reduction methods, the new method avoids iterations by directly estimating the e.d.r subspace and has better finite sample performance. It is shown that the inverse Tukey and Oja median regression curve falls into the e.d.r subspace, and that its directions can be estimated $$\sqrt{n}$$ n -consistently.

Keywords: Affine equivariance property; Dimension reduction subspace; Oja and Tukey medians; Robustness; Sliced inverse regression; 62G05; 62G20; 62G32; 62G35 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00362-018-1007-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:61:y:2020:i:5:d:10.1007_s00362-018-1007-z

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-018-1007-z

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:61:y:2020:i:5:d:10.1007_s00362-018-1007-z