Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India
Helmut Herwartz and
Simone Maxand ()
Additional contact information
Helmut Herwartz: University of Goettingen
Simone Maxand: University of Helsinki
Statistical Papers, 2020, vol. 61, issue 5, No 18, 2175-2201
Abstract:
Abstract The detection of dependence structures within a set of random variables provides a valuable basis for a detailed subsequent investigation of their relationships. Nonparametric tests for independence require only basic assumptions on the marginal or joint distribution of the involved variables. In this paper, we review nonparametric tests of independence in bivariate as well as multivariate settings which are throughout ready-to-use, i.e., implemented in R packages. Highlighting their distinct empirical size and power properties in various small sample settings, our analysis supports an analyst in deciding for a most adequate test conditional on underlying distributional settings or data characteristics. Avoiding restrictive moment conditions, the copula based Cramér-von Mises distance of Genest and Rémillard (Test 13:335–370, 2004) is remarkably robust under the null hypothesis and powerful under diverse settings that are in line with the alternative hypothesis. Based on distinguished test outcomes in small samples, we detect nonlinear dependence structures between childhood malnutrition indices and possible determinants in an empirical application for India.
Keywords: Tests for independence; Nonparametric methods; Multivariate independence; Spatial ranks; Empirical copula; Distance covariance; 62G10; 62H15; 62P10 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-018-1026-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:61:y:2020:i:5:d:10.1007_s00362-018-1026-9
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-018-1026-9
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().