On semiparametric transformation model with LTRC data: pseudo likelihood approach
Chyong-Mei Chen,
Pao-sheng Shen () and
Yi Liu
Additional contact information
Chyong-Mei Chen: National Yang-Ming University
Pao-sheng Shen: Tunghai University
Yi Liu: Tunghai University
Statistical Papers, 2021, vol. 62, issue 1, No 2, 3-30
Abstract:
Abstract When the distribution of the truncation time is known up to a finite-dimensional parameter vector, many researches have been conducted with the objective to improve the efficiency of estimation for nonparametric or semiparametric model with left-truncated and right-censored (LTRC) data. When the distribution of truncation times is unspecified, one approach is to use the conditional maximum likelihood estimators (cMLE) (Chen and Shen in Lifetime Data Anal https://doi.org/10.1007/s10985-016-9385-9 , 2017). Although the cMLE has nice asymptotic properties, it is not efficient since the conditional likelihood function does not incorporate information on the distribution of truncation time. In this article, we aim to develop a more efficient estimator by considering the full likelihood function. Following Turnbull (J R Stat Soc B 38:290–295, 1976) and Qin et al. (J Am Stat Assoc 106:1434–1449, 2011), we treat the unobserved (left-truncated) subpopulation as missing data and propose a two-stage approach for obtaining the pseudo maximum likelihood estimators (PMLE) of regression parameters. In the first stage, the distribution of left truncation time is estimated by the inverse-probability-weighted (IPW) estimator (Wang in J Am Stat Assoc 86:130–143, 1991). In the second stage, we obtain the pseudo complete-data likelihood function by replacing the distribution of truncation time with the IPW estimator in the full likelihood. We propose an expectation–maximization algorithm for obtaining the PMLE and establish the consistency of the PMLE. Simulation results show that the PMLE outperforms the cMLE in terms of mean squared error. The PMLE can also be used to analyze the length-biased data, where the truncation time is uniformly distributed. We demonstrate that the PMLE works more robust against the support assumption of truncation time for length-biased data compared with the MLE proposed by Qin et al. (2011). We apply our proposed method to the channing house data. While the PMLE is quite appealing under specific cases with independent censoring and time-invariant covariates, its applicability, as shown in simulation study, can be rather restricted for more general settings.
Keywords: EM algorithm; Left truncation; Pseudo-likelihood; Semiparametric transformation model; Two-stage estimation; 62N01 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-018-01080-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-018-01080-w
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-018-01080-w
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().