Sliced inverse regression method for multivariate compositional data modeling
Huiwen Wang,
Zhichao Wang and
Shanshan Wang ()
Additional contact information
Huiwen Wang: Beihang University
Zhichao Wang: Beihang University
Shanshan Wang: Beihang University
Statistical Papers, 2021, vol. 62, issue 1, No 15, 393 pages
Abstract:
Abstract Compositional data modeling is of great practical importance, as exemplified by applications in economic and geochemical data analysis. In this study, we investigate the sliced inverse regression (SIR) procedure for multivariate compositional data with a scalar response. We can achieve dimension reduction for the original multivariate compositional data quickly and then conduct a regression on the dimensional-reduced compositions. It is documented that the proposed method is successful in detecting effective dimension reduction directions, which generalizes the theoretical framework of SIR to multivariate compositional data. Comprehensive simulation studies are conducted to evaluate the performance of the proposed SIR procedure and the simulation results show its feasibility and effectiveness. A real data application is finally used to illustrate the success of the proposed SIR-based method.
Keywords: Effective dimension reduction; Multivariate compositional data; Sliced inverse regression; Total covariance matrix; Simplicial multiple normal distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-019-01093-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-019-01093-z
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-019-01093-z
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().