EconPapers    
Economics at your fingertips  
 

Estimation issues in the Exponential–Logarithmic model under hybrid censoring

Ruhul Ali Khan () and Murari Mitra ()
Additional contact information
Ruhul Ali Khan: Indian Institute of Engineering Science and Technology
Murari Mitra: Indian Institute of Engineering Science and Technology

Statistical Papers, 2021, vol. 62, issue 1, No 17, 419-450

Abstract: Abstract In this paper we develop both frequentist and Bayesian estimation methodologies for parameters of an Exponential–Logarithmic Distribution under Type-I hybrid censoring. In frequentist approach, it is observed that the Maximum Likelihood Estimators (MLEs) do not have closed form expressions. We use both the EM and SEM algorithms to compute the MLEs and using the missing information principle obtain the observed Fisher information matrix which is then used to construct the asymptotic confidence intervals. Further, two bootstrap interval estimates are proposed for the unknown parameters. Under squared error loss and LINEX loss functions, we obtain Bayes estimates of the unknown parameters assuming independent gamma and beta priors using the Lindley method, Tierney–Kadane method and the importance sampling procedure. The problem of prediction is also explored. A real life data set as well as simulated data have been analyzed for illustrative purposes.

Keywords: Maximum likelihood estimators; SEM algorithm; Fisher information matrix; Type-I hybrid censoring; Bootstrap; Importance sampling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-019-01100-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-019-01100-3

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-019-01100-3

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-019-01100-3