A self-normalization break test for correlation matrix
Ji-Eun Choi and
Dong Wan Shin ()
Additional contact information
Ji-Eun Choi: Ewha University
Dong Wan Shin: Ewha University
Statistical Papers, 2021, vol. 62, issue 5, No 13, 2333-2353
Abstract:
Abstract We construct a new test for correlation matrix break based on the self-normalization method. The self-normalization test has practical advantage over the existing test: easy and stable implementation; not having the singularity issue and the bandwidth selection issue of the existing test; remedying size distortion problem of the existing test under (near) singularity, serial dependence, conditional heteroscedasticity or unconditional heteroscedasticity. This advantage is demonstrated experimentally by a Monte-Carlo simulation and theoretically by showing no need for estimation of complicated covariance matrix of the sample correlations. We establish the asymptotic null distribution and consistency of the self-normalization test. We apply the correlation matrix break tests to the stock log returns of the companies of 10 largest weight of the NASDAQ 100 index and to five volatility indexes for options on individual equities.
Keywords: Self-normalization; Correlation matrix break; CUSUM test; Serial dependence; Conditional heteroscedasticity; Unconditional heteroscedasticity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-020-01188-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:62:y:2021:i:5:d:10.1007_s00362-020-01188-y
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-020-01188-y
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().