EconPapers    
Economics at your fingertips  
 

Model-free feature screening via distance correlation for ultrahigh dimensional survival data

Jing Zhang (), Yanyan Liu () and Hengjian Cui ()
Additional contact information
Jing Zhang: Zhongnan University of Economics and Law
Yanyan Liu: Wuhan University
Hengjian Cui: Capital Normal University

Statistical Papers, 2021, vol. 62, issue 6, No 9, 2738 pages

Abstract: Abstract With the explosion of ultrahigh dimensional data in various fields, many sure independent screening methods have been proposed to reduce the dimensionality of data from a large scale to a relatively moderate scale. For censored survival data, the existing screening methods mainly adopt the Kaplan–Meier estimator to handle censoring, which may not perform well for heavy censoring cases. In this article, we propose a novel sure independent screening procedure based on distance correlation after standardizing marginal variables for ultrahigh dimensional survival data. It is a model-free approach and does not involve the Kaplan–Meier estimator, thus its performance is much more robust than the existing methods. Furthermore, our proposed method enjoys other advantages: it avoids the complication to specify an actual model from large number of covariates; it enjoys the sure screening property and the ranking consistency under some mild regularity conditions; it does not require any complicated numerical optimization, so the corresponding calculation is very simple and fast. Extensive numerical studies demonstrate that the proposed method has favorable exhibition over the existing methods. As an illustration, we apply the proposed method to a gene expression data set.

Keywords: Distance correlation; Model-free screening; Sure screening property; Survival data; Ultrahigh dimensional data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s00362-020-01210-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:62:y:2021:i:6:d:10.1007_s00362-020-01210-3

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-020-01210-3

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:62:y:2021:i:6:d:10.1007_s00362-020-01210-3