Understanding nonsense correlation between (independent) random walks in finite samples
Uwe Hassler and
Mehdi Hosseinkouchack ()
Statistical Papers, 2022, vol. 63, issue 1, No 8, 195 pages
Abstract:
Abstract Consider two independent random walks. By chance, there will be spells of association between them where the two processes move in the same direction, or in opposite direction. We compute the probabilities of the length of the longest spell of such random association for a given sample size, and discuss measures like mean and mode of the exact distributions. We observe that long spells (relative to small sample sizes) of random association occur frequently, which explains why nonsense correlation between short independent random walks is the rule rather than the exception. The exact figures are compared with approximations. Our finite sample analysis as well as the approximations rely on two older results popularized by Révész (Stat Pap 31:95–101, 1990, Statistical Papers). Moreover, we consider spells of association between correlated random walks. Approximate probabilities are compared with finite sample Monte Carlo results.
Keywords: Coin tossing; Concordance; Discordance; Maximum length of association; 60G50; 62H20 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-021-01237-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:63:y:2022:i:1:d:10.1007_s00362-021-01237-0
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-021-01237-0
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().