Subdata selection algorithm for linear model discrimination
Jun Yu () and
HaiYing Wang ()
Additional contact information
Jun Yu: Beijing Institute of Technology
HaiYing Wang: University of Connecticut
Statistical Papers, 2022, vol. 63, issue 6, No 7, 1883-1906
Abstract:
Abstract A statistical method is likely to be sub-optimal if the assumed model does not reflect the structure of the data at hand. For this reason, it is important to perform model selection before statistical analysis. However, selecting an appropriate model from a large candidate pool is usually computationally infeasible when faced with a massive data set, and little work has been done to study data selection for model selection. In this work, we propose a subdata selection method based on leverage scores which enables us to conduct the selection task on a small subdata set. Compared with existing subsampling methods, our method not only improves the probability of selecting the best model but also enhances the estimation efficiency. We justify this both theoretically and numerically. Several examples are presented to illustrate the proposed method.
Keywords: Bayesian information criterion; Big data; Discrimination design; D-optimal design; Entropy; Measurement constraints; 62K05; 62J05 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s00362-022-01299-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:63:y:2022:i:6:d:10.1007_s00362-022-01299-8
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-022-01299-8
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().