Optimal equivalence testing in exponential families
Renren Zhao and
Robert L. Paige ()
Additional contact information
Renren Zhao: College of Coastal Georgia
Robert L. Paige: Missouri University of Science and Technology
Statistical Papers, 2023, vol. 64, issue 5, No 6, 1507-1525
Abstract:
Abstract We develop uniformly most powerful unbiased (UMPU) two sample equivalence test for a difference of canonical parameters in exponential families. This development involves a non-unique reparametrization. We address this issue via a novel characterization of all possible reparametrizations of interest in terms of a matrix group. Furthermore, our procedure involves an intractable conditional distribution which we reproduce to a high degree of accuracy using saddlepoint approximations. The development of this saddlepoint-based procedure involves a non-unique reparametrization but we show that our procedure is invariant under choice of reparametrization. Our real data example considers the mean-to-variance ratio for normally distributed data. We compare our result to six competing equivalence testing procedures for the mean-to-variance ratio. Only our UMPU method finds evidence of equivalence, which is the expected result. We also perform a Monte Carlo simulation study which shows that our UMPU method outperforms all competing methods by exhibiting an empirical significance level which is not statistically significantly different from the nominal 5% level for all simulation settings.
Keywords: Equivalence tests; Exponential families; Saddlepoint approximations; Uniformly most powerful test (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-022-01346-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:64:y:2023:i:5:d:10.1007_s00362-022-01346-4
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-022-01346-4
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().