EconPapers    
Economics at your fingertips  
 

Sequential design of multi-fidelity computer experiments with effect sparsity

Hui Chen, Linhan Ouyang, Lijun Liu and Yizhong Ma ()
Additional contact information
Hui Chen: Nanjing University of Science and Technology
Linhan Ouyang: Nanjing University of Aeronautics and Astronautics
Lijun Liu: Nanjing University of Science and Technology
Yizhong Ma: Nanjing University of Science and Technology

Statistical Papers, 2023, vol. 64, issue 6, No 10, 2057-2080

Abstract: Abstract A growing area of focus is using multi-fidelity(MF) simulations to predict the behavior of complex physical systems. In order to adequately utilize the popular sequential designs to improve the effectiveness of the MF method, two challenges involving good projection properties in the presence of effect sparsity and the sample allocation between the high-fidelity(HF) and low-fidelity (LF) codes remain to be addressed. Unfortunately, no systematic study has hitherto been done to deal with these two key issues simultaneously. This article develops a sequential nested design for MF experiments that pays attention to both the space-filling properties in all subsets of factors and the best combination between the two levels of accuracy. For the first issue, we propose a weighted maximum projection criterion combining the uniformity metrics of the HF and LF experiments to select HF points, where the weights are totally data-driven. Note that the obtained HF data is also executed in LF codes to form a nested structure. On the other hand, those samples that only appear in the LF simulation are obtained by the original maximum projection design. The second issue is directly connected with deciding which code to run in the next iteration. We use the entropy theory to score the execution of fidelity for each version, such that the one who has a greater potential to improve the model accuracy will be selected. The performance of the proposed approach is illustrated through several numerical examples. The results demonstrate that the proposed approach outperforms the other three methods in terms of both the prediction accuracy of the final surrogate model and the uniformity in all subspaces of the two codes.

Keywords: Multi-fidelity; Sequential design; Nested design; Effect sparsity; Projection properties; Sample allocation (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-022-01370-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01370-4

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-022-01370-4

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01370-4