Robust estimation of average treatment effects from panel data
Sayoni Roychowdhury,
Indrila Ganguly and
Abhik Ghosh ()
Additional contact information
Sayoni Roychowdhury: Indian Statistical Institute
Indrila Ganguly: North Carolina State University
Abhik Ghosh: Indian Statistical Institute
Statistical Papers, 2024, vol. 65, issue 1, No 7, 139-179
Abstract:
Abstract In order to evaluate the impact of a policy intervention on a group of units over time, it is important to correctly estimate the average treatment effect (ATE) measure. Due to lack of robustness of the existing procedures of estimating ATE from panel data, in this paper, we introduce a robust estimator of the ATE and the subsequent inference procedures using the popular approach of minimum density power divergence inference. Asymptotic properties of the proposed ATE estimator are derived and used to construct robust test statistics for testing parametric hypotheses related to the ATE. Besides asymptotic analyses of efficiency and power, extensive simulation studies are conducted to study the finite-sample performances of our proposed estimation and testing procedures under both pure and contaminated data. The robustness of the ATE estimator is further investigated theoretically through the influence function analyses. Finally our proposal is applied to study the long-term economic effects of the 2004 Indian Ocean earthquake and tsunami on the (per-capita) gross domestic products (GDP) of five mostly affected countries, namely Indonesia, Sri Lanka, Thailand, India and Maldives.
Keywords: Density power divergence; Robust inference; Panel data; Influence function; Tsunami and GDP (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-022-01389-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:65:y:2024:i:1:d:10.1007_s00362-022-01389-7
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-022-01389-7
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().