Kalman recursions Aggregated Online
Eric Adjakossa (),
Yannig Goude () and
Olivier Wintenberger
Additional contact information
Eric Adjakossa: MIA Paris-Saclay (UMR 518), Paris-Saclay University, AgroParisTech Campus
Yannig Goude: EDF Lab
Statistical Papers, 2024, vol. 65, issue 2, No 15, 909-944
Abstract:
Abstract In this article, we aim to improve the prediction from experts’ aggregation by using the underlying properties of the models that provide the experts involved in the aggregation procedure. We restrict ourselves to the case where experts perform their predictions by fitting state-space models to the data using Kalman recursions. Using exponential weights, we construct different Kalman recursions Aggregated Online (KAO) algorithms that compete with the best expert or the best convex combination of experts in a more or less adaptive way. When the experts are Kalman recursions, we improve the existing results on experts’ aggregation literature, taking advantage of the second-order properties of the Kalman recursions. We apply our approach to Kalman recursions and extend it to the general adversarial expert setting by state-space modeling the experts’ errors. We apply these new algorithms to a real-data set of electricity consumption and show how they can improve forecast performances compared to other exponentially weighted average procedures.
Keywords: Online aggregation; Kalman filter; Experts ensemble (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-023-01410-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01410-7
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-023-01410-7
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().