EconPapers    
Economics at your fingertips  
 

Inference of improved adaptive progressively censored competing risks data for Weibull lifetime models

Ahmed Elshahhat () and Mazen Nassar
Additional contact information
Ahmed Elshahhat: Zagazig University
Mazen Nassar: King Abdulaziz University

Statistical Papers, 2024, vol. 65, issue 3, No 2, 1163-1196

Abstract: Abstract Recently, an improved adaptive Type-II progressive censoring scheme is proposed to ensure that the experimental time will not pass a pre-fixed time and ends the test after recording a pre-fixed number of failures. This paper studies the inference of the competing risks model from Weibull distribution under the improved adaptive progressive Type-II censoring. For this goal, we used the latent failure time model with Weibull lifetime distributions with common shape parameters. The point and interval estimation problems of parameters, reliability and hazard rate functions using the maximum likelihood and Bayesian estimation methods are considered. Moreover, making use of the asymptotic normality of classical estimators and delta method, approximate intervals are constructed via the observed Fisher information matrix. Following the assumption of independent gamma priors, the Bayes estimates of the scale parameters have closed expressions, but when the common shape parameter is unknown, the Bayes estimates cannot be formed explicitly. To solve this difficulty, we recommend using Markov chain Monte Carlo routine to compute the Bayes estimates and to construct credible intervals. A comprehensive Monte Carlo simulation is conducted to judge the behavior of the offered methods. Ultimately, analysis of electrodes data from the life-test of high-stress voltage endurance is provided to illustrate all proposed inferential procedures.

Keywords: Bayesian estimators; Improved adaptive Type-II progressive censoring; Markov chain Monte Carlo techniques; Maximum likelihood estimators; Reliability characteristics; Weibull distribution (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-023-01417-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:65:y:2024:i:3:d:10.1007_s00362-023-01417-0

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-023-01417-0

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:65:y:2024:i:3:d:10.1007_s00362-023-01417-0