EconPapers    
Economics at your fingertips  
 

Finite mixtures of mean-parameterized Conway–Maxwell–Poisson models

Dongying Zhan () and Derek S. Young ()
Additional contact information
Dongying Zhan: University of Kentucky
Derek S. Young: University of Kentucky

Statistical Papers, 2024, vol. 65, issue 3, No 12, 1469-1492

Abstract: Abstract For modeling count data, the Conway–Maxwell–Poisson (CMP) distribution is a popular generalization of the Poisson distribution due to its ability to characterize data over- or under-dispersion. While the classic parameterization of the CMP has been well-studied, its main drawback is that it is does not directly model the mean of the counts. This is mitigated by using a mean-parameterized version of the CMP distribution. In this work, we are concerned with the setting where count data may be comprised of subpopulations, each possibly having varying degrees of data dispersion. Thus, we propose a finite mixture of mean-parameterized CMP distributions. An EM algorithm is constructed to perform maximum likelihood estimation of the model, while bootstrapping is employed to obtain estimated standard errors. A simulation study is used to demonstrate the flexibility of the proposed mixture model relative to mixtures of Poissons and mixtures of negative binomials. An analysis of dog mortality data is presented.

Keywords: Bootstrapping; Count data; Data dispersion; EM algorithm; Negative binomial (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-023-01452-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:65:y:2024:i:3:d:10.1007_s00362-023-01452-x

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-023-01452-x

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:65:y:2024:i:3:d:10.1007_s00362-023-01452-x