On the limit distribution of the power function induced by a design prior
Fulvio De Santis () and
Stefania Gubbiotti ()
Additional contact information
Fulvio De Santis: Sapienza University of Rome
Stefania Gubbiotti: Sapienza University of Rome
Statistical Papers, 2024, vol. 65, issue 4, No 2, 1927-1945
Abstract:
Abstract The hybrid frequentist-Bayesian approach to sample size determination is based on the expectation of the power function of a test with respect to a design prior for the unknown parameter value. In clinical trials this quantity is often called probability of success (PoS). Determination of the limiting value of PoS as the number of observations tends to infinity, that is crucial for well defined sample size criteria, has been considered in previous articles. Here, we focus on the asymptotic behavior of the whole distribution of the power function induced by the design prior. Under mild conditions, we provide asymptotic results for the three most common classes of hypotheses on a scalar parameter. The impact of the design parameters choice on the distribution of the power function and on its limit is discussed.
Keywords: Bayesian design; Clinical trials; Probability of success; Sample size determination (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-023-01462-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01462-9
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-023-01462-9
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().