EconPapers    
Economics at your fingertips  
 

Hypothesis testing for varying coefficient models in tail index regression

Koki Momoki () and Takuma Yoshida ()
Additional contact information
Koki Momoki: Kagoshima University
Takuma Yoshida: Kagoshima University

Statistical Papers, 2024, vol. 65, issue 6, No 18, 3852 pages

Abstract: Abstract This study examines the varying coefficient model in tail index regression. The varying coefficient model is an efficient semiparametric model that avoids the curse of dimensionality when including large covariates in the model. In fact, the varying coefficient model is useful in mean, quantile, and other regressions. The tail index regression is not an exception. However, the varying coefficient model is flexible, but leaner and simpler models are preferred for applications. Therefore, it is important to evaluate whether the estimated coefficient function varies significantly with covariates. If the effect of the non-linearity of the model is weak, the varying coefficient structure is reduced to a simpler model, such as a constant or zero. Accordingly, the hypothesis test for model assessment in the varying coefficient model has been discussed in mean and quantile regression. However, there are no results in tail index regression. In this study, we investigate the asymptotic properties of an estimator and provide a hypothesis testing method for varying coefficient models for tail index regression.

Keywords: Extreme value theory; Hypothesis testing; Pareto-type model; Tail index regression; Varying coefficient model; 62G08; 62G10; 62G20; 62G32 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00362-024-01538-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-024-01538-0

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-024-01538-0

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-024-01538-0