Imitated student’s t distribution: a Bayesian approach
Łukasz Lenart () and
Justyna Mokrzycka-Gajda ()
Additional contact information
Łukasz Lenart: Krakow University of Economics
Justyna Mokrzycka-Gajda: Krakow University of Economics
Statistical Papers, 2025, vol. 66, issue 4, No 28, 44 pages
Abstract:
Abstract The objective of this article is to develop a new symmetric distribution capable of mimicking the Student’s t distribution with any precision controlled by a single tuning parameter. Despite the non-existence of higher-order moments of the Student’s t distribution, all moments of the proposed distribution do exist. Moreover, it remains subnormal at all times, regardless of how closely it approximates the t distribution. We strongly advocate for Bayesian inference with the proposed distribution, given the ease of identifying observations in the tails in a formal way using latent variables. Effective MCMC methods are attainable by a specific hierarchical representation of the proposed distribution. The simulation and empirical examples demonstrate the flexibility of the proposed distribution in capturing extreme observations.
Keywords: Heavy-tailed distribution; Finite moments; MCMC sampler; Time series; Outliers (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00362-025-01720-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01720-y
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-025-01720-y
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().