TEST: An Official Journal of the Spanish Society of Statistics and Operations Research
1992 - 2025
Current editor(s): Alfonso Gordaliza and Ana F. Militino From: Springer Sociedad de Estadística e Investigación Operativa Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 28, issue 4, 2019
- Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem pp. 1033-1065

- Denis Devaud and Yves Tillé
- Comments on: Deville and Särndal’s Calibration: revisiting a 25 years old successful optimization problem pp. 1066-1067

- Phillip S. Kott
- Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem pp. 1068-1070

- Domingo Morales
- Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem pp. 1071-1076

- Jean-Francois Beaumont and J. N. K. Rao
- Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem pp. 1077-1081

- Maria del Mar Rueda
- Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem pp. 1082-1086

- Changbao Wu and Shixiao Zhang
- Rejoinder on: Deville and Särndal’s calibration: revisiting a 25-year-old successful optimization problem pp. 1087-1091

- Denis Devaud and Yves Tillé
- An $${{\varvec{L}}}^{2}$$L2-norm-based test for equality of several covariance functions: a further study pp. 1092-1112

- Jia Guo, Bu Zhou, Jianwei Chen and Jin-Ting Zhang
- Statistical inference using rank-based post-stratified samples in a finite population pp. 1113-1143

- Omer Ozturk
- Asymptotics for the linear kernel quantile estimator pp. 1144-1174

- Xuejun Wang, Yi Wu, Wei Yu, Wenzhi Yang and Shuhe Hu
- Likelihood-based tests for a class of misspecified finite mixture models for ordinal categorical data pp. 1175-1202

- Roberto Colombi and Sabrina Giordano
- Testing equality of a large number of densities under mixing conditions pp. 1203-1228

- Marta Cousido-Rocha, Jacobo Uña-Álvarez and Jeffrey D. Hart
- On the convenience of heteroscedasticity in highly multivariate disease mapping pp. 1229-1250

- F. Corpas-Burgos, P. Botella-Rocamora and M. A. Martinez-Beneito
- Identification and estimation in quantile varying-coefficient models with unknown link function pp. 1251-1275

- Lili Yue, Gaorong Li and Heng Lian
Volume 28, issue 3, 2019
- Compositional data: the sample space and its structure pp. 599-638

- Juan José Egozcue and Vera Pawlowsky-Glahn
- Comments on: Compositional data: the sample space and its structure pp. 639-643

- Peter Filzmoser and Karel Hron
- Comments on: Compositional data: the sample space and its structure pp. 644-652

- Michael Greenacre
- Comments on: Compositional data: the sample space and its structure pp. 653-657

- J. A. Martín-Fernández
- Rejoinder on: Compositional data: the sample space and its structure pp. 658-663

- Juan José Egozcue and Vera Pawlowsky-Glahn
- Comments on: Data science, big data and statistics pp. 664-670

- Ricardo Cao
- Affine invariant depth-based tests for the multivariate one-sample location problem pp. 671-693

- Sakineh Dehghan and Mohammad Reza Faridrohani
- NOVELIST estimator of large correlation and covariance matrices and their inverses pp. 694-727

- Na Huang and Piotr Fryzlewicz
- Objective Bayesian inference with proper scoring rules pp. 728-755

- F. Giummolè, V. Mameli, E. Ruli and L. Ventura
- Weighted likelihood estimation of multivariate location and scatter pp. 756-784

- Claudio Agostinelli and Luca Greco
- Robust simultaneous inference for the mean function of functional data pp. 785-803

- Italo R. Lima, Guanqun Cao and Nedret Billor
- Two-sample test for sparse high-dimensional multinomial distributions pp. 804-826

- Amanda Plunkett and Junyong Park
- Link misspecification in generalized linear mixed models with a random intercept for binary responses pp. 827-843

- Shun Yu and Xianzheng Huang
- Heavy-tailed longitudinal regression models for censored data: a robust parametric approach pp. 844-878

- Larissa A. Matos, Víctor H. Lachos, Tsung-I Lin and Luis M. Castro
- Minimum distance model checking in Berkson measurement error models with validation data pp. 879-899

- Pei Geng and Hira L. Koul
- Mode testing, critical bandwidth and excess mass pp. 900-919

- Jose Ameijeiras-Alonso, Rosa M. Crujeiras and Alberto Rodríguez-Casal
- Influence diagnostics in mixed effects logistic regression models pp. 920-942

- Alejandra Tapia, Victor Leiva, Maria del Pilar Diaz and Viviana Giampaoli
- Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors pp. 943-968

- M. D. Ruiz-Medina, D. Miranda and R. M. Espejo
- A GQL-based inference in non-stationary BINMA(1) time series pp. 969-998

- Miroslav M. Ristić, Yuvraj Sunecher, Naushad Mamode Khan and Vandna Jowaheer
- Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data pp. 999-1032

- Jing Lv, Chaohui Guo and Jibo Wu
Volume 28, issue 2, 2019
- Data science, big data and statistics pp. 289-329

- Pedro Galeano and Daniel Peña
- Comments on: Data science, big data and statistics pp. 330-333

- Peter Bühlmann
- Comments on: Data science, big data and statistics pp. 334-337

- Pedro Delicado
- Comments on: Data science, big data and statistics pp. 338-341

- Marc G. Genton and Ying Sun
- Comments on: Data science, big data and statistics pp. 342-344

- J. S. Marron
- Comments on: Data science, big data and statistics pp. 345-348

- Abigael C. Nachtsheim and John Stufken
- Comments on: Data science, big data and statistics pp. 349-352

- Marco Riani, Anthony C. Atkinson, Andrea Cerioli and Aldo Corbellini
- Comments on: Data science, big data and statistics pp. 353-356

- Jian Qing Shi and Shane Halloran
- Comments on: Data science, big data and statistics pp. 357-359

- Ruey S. Tsay
- Comments on: Data science, big data and statistics pp. 360-362

- Stefan Aelst and Ruben H. Zamar
- Rejoinder on: Data science, big data and statistics pp. 363-368

- Pedro Galeano and Daniel Peña
- Robust inference for nonlinear regression models pp. 369-398

- Ana M. Bianco and Paula M. Spano
- Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models pp. 399-422

- Luigi Spezia
- A plug-in bandwidth selector for nonparametric quantile regression pp. 423-450

- Mercedes Conde-Amboage and César Sánchez-Sellero
- Prediction error bounds for linear regression with the TREX pp. 451-474

- Jacob Bien, Irina Gaynanova, Johannes Lederer and Christian L. Müller
- A stochastic ordering based on the canonical transformation of skew-normal vectors pp. 475-498

- Jorge M. Arevalillo and Hilario Navarro
- A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function pp. 499-521

- Norbert Henze and María Dolores Jiménez-Gamero
- Prior-free probabilistic interval estimation for binomial proportion pp. 522-542

- Hezhi Lu, Hua Jin, Zhining Wang, Chao Chen and Ying Lu
- A flexible class of parametric distributions for Bayesian linear mixed models pp. 543-564

- Mohsen Maleki, Darren Wraith and Reinaldo B. Arellano-Valle
- A generalized mixed model for skewed distributions applied to small area estimation pp. 565-597

- Monique Graf, J. Miguel Marín and Isabel Molina
Volume 28, issue 1, 2019
- Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions pp. 1-39

- Thomas Kneib, Nadja Klein, Stefan Lang and Nikolaus Umlauf
- Comments on: Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions pp. 40-42

- T. Goicoa
- Comments on: Modular regression—a Lego system for building structured additive distributional regression models with tensor product interactions pp. 43-45

- Matthew Reimherr
- Comments on: Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions pp. 46-51

- Patrick Schnell
- Comments on: Modular regression—a Lego system for building structured additive distributional regression models with tensor product interactions pp. 52-54

- M. D. Stasinopoulos, R. A. Rigby, G. Z. Heller and F. De Bastiani
- Rejoinder on: Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions pp. 55-59

- Thomas Kneib, Nadja Klein, Stefan Lang and Nikolaus Umlauf
- A mixture factor model with applications to microarray data pp. 60-76

- Chaofeng Yuan, Wensheng Zhu, Xuming He and Jianhua Guo
- Amari–Chentsov structure on the statistical manifold of models for accelerated life tests pp. 77-105

- Fode Zhang, Hon Keung Tony Ng, Yimin Shi and Ruibing Wang
- Plug-in marginal estimation under a general regression model with missing responses and covariates pp. 106-146

- Ana M. Bianco, Graciela Boente, Wenceslao González-Manteiga and Ana Pérez-González
- Optimal design to discriminate between rival copula models for a bivariate binary response pp. 147-165

- Laura Deldossi, Silvia Angela Osmetti and Chiara Tommasi
- Sharp bounds on distribution functions and expectations of mixtures of ordered families of distributions pp. 166-195

- Tomasz Rychlik
- Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values pp. 196-222

- Wan-Lun Wang
- A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter pp. 223-241

- Alfio Marazzi, Marina Valdora, Victor Yohai and Michael Amiguet
- Estimation and hypothesis test for single-index multiplicative models pp. 242-268

- Jun Zhang, Junpeng Zhu and Zhenghui Feng
- Jackknife empirical likelihood inference for the accelerated failure time model pp. 269-288

- Xue Yu and Yichuan Zhao
| |