EconPapers    
Economics at your fingertips  
 

Predicting first-year university progression using early warning signals from accounting education: A machine learning approach

Patricia Everaert, Evelien Opdecam and Hans van der Heijden

Accounting Education, 2024, vol. 33, issue 1, 1-26

Abstract: In this paper, we examine whether early warning signals from accounting courses (such as early engagement and early formative performance) are predictive of first-year progression outcomes, and whether this data is more predictive than personal data (such as gender and prior achievement). Using a machine learning approach, results from a sample of 609 first-year students from a continental European university show that early warnings from accounting courses are strongly predictive of first-year progression, and more so than data available at the start of the first year. In addition, the further the student is along their journey of the first undergraduate year, the more predictive the accounting engagement and performance data becomes for the prediction of programme progression outcomes. Our study contributes to the study of early warning signals for dropout through machine learning in accounting education, suggests implications for accounting educators, and provides useful pointers for further research in this area.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/09639284.2022.2145570 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:accted:v:33:y:2024:i:1:p:1-26

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAED20

DOI: 10.1080/09639284.2022.2145570

Access Statistics for this article

Accounting Education is currently edited by Richard Wilson

More articles in Accounting Education from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:accted:v:33:y:2024:i:1:p:1-26