Hidden Dangers of Specifying Noninformative Priors
John W. Seaman,
John W. Seaman and
James Stamey
The American Statistician, 2012, vol. 66, issue 2, 77-84
Abstract:
“Noninformative” priors are widely used in Bayesian inference. Diffuse priors are often placed on parameters that are components of some function of interest. That function may, of course, have a prior distribution that is highly informative, in contrast to the joint prior placed on its arguments, resulting in unintended influence on the posterior for the function. This problem is not always recognized by users of “noninformative” priors. We consider several examples of this problem. We also suggest methods for handling such induced priors.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2012.695938 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:66:y:2012:i:2:p:77-84
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2012.695938
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().