A Coverage Probability Approach to Finding an Optimal Binomial Confidence Procedure
Mark F. Schilling and
Jimmy A. Doi
The American Statistician, 2014, vol. 68, issue 3, 133-145
Abstract:
The problem of finding confidence intervals for the success parameter of a binomial experiment has a long history, and a myriad of procedures have been developed. Most exploit the duality between hypothesis testing and confidence regions and are typically based on large sample approximations. We instead employ a direct approach that attempts to determine the optimal coverage probability function a binomial confidence procedure can have from the exact underlying binomial distributions, which in turn defines the associated procedure. We show that a graphical perspective provides much insight into the problem. Both procedures whose coverage never falls below the declared confidence level and those that achieve that level only approximately are analyzed. We introduce the Length/Coverage Optimal method, a variant of Sterne's procedure that minimizes average length while maximizing coverage among all length minimizing procedures, and show that it is superior in important ways to existing procedures.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.899274 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:68:y:2014:i:3:p:133-145
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2014.899274
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().