Uniform Correlation Mixture of Bivariate Normal Distributions and Hypercubically Contoured Densities That Are Marginally Normal
Kai Zhang,
Lawrence D. Brown,
Edward George and
Linda Zhao
The American Statistician, 2014, vol. 68, issue 3, 183-187
Abstract:
The bivariate normal density with unit variance and correlation ρ is well known. We show that by integrating out ρ, the result is a function of the maximum norm. The Bayesian interpretation of this result is that if we put a uniform prior over ρ, then the marginal bivariate density depends only on the maximal magnitude of the variables. The square-shaped isodensity contour of this resulting marginal bivariate density can also be regarded as the equally weighted mixture of bivariate normal distributions over all possible correlation coefficients. This density links to the Khintchine mixture method of generating random variables. We use this method to construct the higher dimensional generalizations of this distribution. We further show that for each dimension, there is a unique multivariate density that is a differentiable function of the maximum norm and is marginally normal, and the bivariate density from the integral over ρ is its special case in two dimensions.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.909741 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:68:y:2014:i:3:p:183-187
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2014.909741
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().