Understanding and Addressing the Unbounded "Likelihood" Problem
Shiyao Liu,
Huaiqing Wu and
William Q. Meeker
The American Statistician, 2015, vol. 69, issue 3, 191-200
Abstract:
The joint probability density function, evaluated at the observed data, is commonly used as the likelihood function to compute maximum likelihood estimates. For some models, however, there exist paths in the parameter space along which this density-approximation likelihood goes to infinity and maximum likelihood estimation breaks down. In all applications, however, observed data are really discrete due to the round-off or grouping error of measurements. The "correct likelihood" based on interval censoring can eliminate the problem of an unbounded likelihood. This article categorizes the models leading to unbounded likelihoods into three groups and illustrates the density-approximation breakdown with specific examples. Although it is usually possible to infer how given data were rounded, when this is not possible, one must choose the width for interval censoring, so we study the effect of the round-off on estimation. We also give sufficient conditions for the joint density to provide the same maximum likelihood estimate as the correct likelihood, as the round-off error goes to zero.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.1003968 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:69:y:2015:i:3:p:191-200
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2014.1003968
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().