Data-Driven Confidence Interval Estimation Incorporating Prior Information with an Adjustment for Skewed Data
Albert Vexler,
Li Zou and
Alan D. Hutson
The American Statistician, 2016, vol. 70, issue 3, 243-249
Abstract:
Bayesian credible interval (CI) estimation is a statistical procedure that has been well addressed in both the theoretical and applied literature. Parametric assumptions regarding baseline data distributions are critical for the implementation of this method. We provide a nonparametric technique for incorporating prior information into the equal-tailed (ET) and highest posterior density (HPD) CI estimators in the Bayesian manner. We propose to use a data-driven likelihood function, replacing the parametric likelihood function to create a distribution-free posterior. Higher order asymptotic propositions are derived to show the efficiency and consistency of the proposed method. We demonstrate that the proposed approach may correct confidence regions with respect to skewness of the data distribution. An extensive Monte Carlo (MC) study confirms the proposed method significantly outperforms the classical CI estimation in a frequentist context. A real data example related to a study of myocardial infarction illustrates the excellent applicability of the proposed technique. Supplementary material, including the R code used to implement the developed method, is available online.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1141707 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:70:y:2016:i:3:p:243-249
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2016.1141707
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().