Calibrated Bayes Factors in Assessing Genetic Association Models
J. G. Liao,
Duanping Liao and
Arthur Berg
The American Statistician, 2016, vol. 70, issue 3, 250-256
Abstract:
Three competing genetic models—additive, dominant, and recessive—are often considered in genetic association analysis. We propose and develop a calibrated Bayes approach for comparing these competing models that has the desired property of giving equal support to the three models when no genetic association is present. The naïve approach with noncalibrated priors is shown to produce misleading Bayes factors. The method is fully developed with simulation studies, real data analyses, and an efficient algorithm based on an asymptotic approximation. An illuminating connection to the Kullback–Leibler divergence is also established. The proposed calibrated prior can serve as a reference prior for a genetic association study or as a common baseline prior for comparing Bayes analyses of different datasets.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2015.1109548 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:70:y:2016:i:3:p:250-256
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2015.1109548
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().