Bias Introduced by Rounding in Multiple Imputation for Ordered Categorical Variables
Yan Xia and
Yanyun Yang
The American Statistician, 2016, vol. 70, issue 4, 358-364
Abstract:
Multivariate normality is frequently assumed when multiple imputation is applied for missing data. When data are ordered categorical, imputing missing data using the fully normal imputation results in implausible values falling outside of the categorical values. Naïve rounding has been suggested to round the imputed values to their categorical neighbors for further analysis. Previous studies showed that, for binary data, the rounded values can result in biased mean estimation when the population distribution is asymmetric. However, it has been conjectured that as the number of categories increases, the bias will decrease. To investigate this conjecture, the present study derives the formulas for the biases of the mean and standard deviation for ordered categorical variables with naïve rounding. Results show that both the biases of the mean and standard deviation decrease as the number of categories increases from 3 to 9. This study also finds that although symmetric population distributions lead to unbiased means of the rounded values, the standard deviations may still be largely biased. A simulation study further shows that the biases due to naïve rounding can result in substantially low coverage rates for the population mean parameter.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1200486 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:70:y:2016:i:4:p:358-364
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2016.1200486
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().