Approximate Bayesianity of Frequentist Confidence Intervals for a Binomial Proportion
Shaobo Jin,
Måns Thulin and
Rolf Larsson
The American Statistician, 2017, vol. 71, issue 2, 106-111
Abstract:
The well-known Wilson and Agresti–Coull confidence intervals for a binomial proportion p are centered around a Bayesian estimator. Using this as a starting point, similarities between frequentist confidence intervals for proportions and Bayesian credible intervals based on low-informative priors are studied using asymptotic expansions. A Bayesian motivation for a large class of frequentist confidence intervals is provided. It is shown that the likelihood ratio interval for p approximates a Bayesian credible interval based on Kerman’s neutral noninformative conjugate prior up to O(n− 1) in the confidence bounds. For the significance level α ≲ 0.317, the Bayesian interval based on the Jeffreys’ prior is then shown to be a compromise between the likelihood ratio and Wilson intervals. Supplementary materials for this article are available online.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1208630 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:71:y:2017:i:2:p:106-111
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2016.1208630
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().