Reversals of Least-Square Estimates and Model-Invariant Estimation for Directions of Unique Effects
Brian Knaeble and
Seth Dutter
The American Statistician, 2017, vol. 71, issue 2, 97-105
Abstract:
When a linear model is adjusted to control for additional explanatory variables, the sign of a fitted coefficient may reverse. Here, these reversals are studied using coefficients of determination. The resulting theory can be used to determine directions of unique effects in the presence of model uncertainty. This process is called model-invariant estimation when the estimates are invariant across changes to the model structure. When a single covariate is added, the reversal region can be understood geometrically as an elliptical cone of two nappes with an axis of symmetry relating to a best-possible condition for a reversal using a single coefficient of determination. When a set of covariates are added to a model with a single explanatory variable, model-invariant estimation can be implemented using subject matter knowledge. More general theory with partial coefficients is applicable to analysis of large datasets. Applications are demonstrated with dietary health data from the United Nations.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1226951 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:71:y:2017:i:2:p:97-105
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2016.1226951
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().