A Note on the Inverse Birthday Problem With Applications
Wen-Han Hwang,
Richard Huggins and
Lu-Fang Chen
The American Statistician, 2017, vol. 71, issue 3, 191-201
Abstract:
The classical birthday problem considers the probability that at least two people in a group of size N share the same birthday. The inverse birthday problem considers the estimation of the size N of a group given the number of different birthdays in the group. In practice, this problem is analogous to estimating the size of a population from occurrence data only. The inverse problem can be solved via two simple approaches including the method of moments for a multinominal model and the maximum likelihood estimate of a Poisson model, which we present in this study. We investigate properties of both methods and show that they can yield asymptotically equivalent Wald-type interval estimators. Moreover, we show that these methods estimate a lower bound for the population size when birth rates are nonhomogenous or individuals in the population are aggregated. A simulation study was conducted to evaluate the performance of the point estimates arising from the two approaches and to compare the performance of seven interval estimators, including likelihood ratio and log-transformation methods. We illustrate the utility of these methods by estimating: (1) the abundance of tree species over a 50-hectare forest plot, (2) the number of Chlamydia infections when only the number of different birthdays of the patients is known, and (3) the number of rainy days when the number of rainy weeks is known. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1255657 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:71:y:2017:i:3:p:191-201
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2016.1255657
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().