EconPapers    
Economics at your fingertips  
 

What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?

Jesse Frey and Yimin Zhang

The American Statistician, 2017, vol. 71, issue 4, 305-309

Abstract: The interval between two prespecified order statistics of a sample provides a distribution-free confidence interval for a population quantile. However, due to discreteness, only a small set of exact coverage probabilities is available. Interpolated confidence intervals are designed to expand the set of available coverage probabilities. However, we show here that the infimum of the coverage probability for an interpolated confidence interval is either the coverage probability for the inner interval or the coverage probability obtained by removing the more likely of the two extreme subintervals from the outer interval. Thus, without additional assumptions, interpolated intervals do not expand the set of available guaranteed coverage probabilities.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1226952 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:71:y:2017:i:4:p:305-309

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2016.1226952

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:71:y:2017:i:4:p:305-309