Mean-Minimum Exact Confidence Intervals
Joseph B. Lang
The American Statistician, 2017, vol. 71, issue 4, 354-368
Abstract:
This article introduces mean-minimum (MM) exact confidence intervals for a binomial probability. These intervals guarantee that both the mean and the minimum frequentist coverage never drop below specified values. For example, an MM 95[93]% interval has mean coverage at least 95% and minimum coverage at least 93%. In the conventional sense, such an interval can be viewed as an exact 93% interval that has mean coverage at least 95% or it can be viewed as an approximate 95% interval that has minimum coverage at least 93%. Graphical and numerical summaries of coverage and expected length suggest that the Blaker-based MM exact interval is an attractive alternative to, even an improvement over, commonly recommended approximate and exact intervals, including the Agresti–Coull approximate interval, the Clopper–Pearson (CP) exact interval, and the more recently recommended CP-, Blaker-, and Sterne-based mean-coverage-adjusted approximate intervals.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1256838 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:71:y:2017:i:4:p:354-368
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2016.1256838
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().