Teaching Stats for Data Science
Daniel Kaplan
The American Statistician, 2018, vol. 72, issue 1, 89-96
Abstract:
“Data science” is a useful catchword for methods and concepts original to the field of statistics, but typically being applied to large, multivariate, observational records. Such datasets call for techniques not often part of an introduction to statistics: modeling, consideration of covariates, sophisticated visualization, and causal reasoning. This article re-imagines introductory statistics as an introduction to data science and proposes a sequence of 10 blocks that together compose a suitable course for extracting information from contemporary data. Recent extensions to the mosaic packages for R together with tools from the “tidyverse” provide a concise and readable notation for wrangling, visualization, model-building, and model interpretation: the fundamental computational tasks of data science.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1398107 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:72:y:2018:i:1:p:89-96
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2017.1398107
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().