A New Lens on High School Dropout: Use of Correspondence Analysis and the Statewide Longitudinal Data System
Kathryn Schaefer Ziemer,
Bianica Pires,
Vicki Lancaster,
Sallie Keller,
Mark Orr and
Stephanie Shipp
The American Statistician, 2018, vol. 72, issue 2, 191-198
Abstract:
The combination of log-linear models and correspondence analysis have long been used to decompose contingency tables and aid in their interpretation. Until now, this approach has not been applied to the education Statewide Longitudinal Data System (SLDS), which contains administrative school data at the student level. While some research has been conducted using the SLDS, its primary use is for state education administrative reporting. This article uses the combination of log-linear models and correspondence analysis to gain insight into high school dropouts in two discrete regions in Kentucky, Appalachia and non-Appalachia, defined by the American Community Survey. The individual student records from the SLDS were categorized into one of the two regions and a log-linear model was used to identify the interactions between the demographic characteristics and the dropout categories, push-out and pull-out. Correspondence analysis was then used to visualize the interactions with the expanded push-out categories, boredom, course selection, expulsion, failing grade, teacher conflict, and pull-out categories, employment, family problems, illness, marriage, and pregnancy to provide insights into the regional differences. In this article, we demonstrate that correspondence analysis can extend the insights gained from SDLS data and provide new perspectives on dropouts. Supplementary materials for this article are available online.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1322002 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:72:y:2018:i:2:p:191-198
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2017.1322002
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().