Testing for Serial Independence: Beyond the Portmanteau Approach
Luca Bagnato,
Lucio De Capitani and
Antonio Punzo
The American Statistician, 2018, vol. 72, issue 3, 219-238
Abstract:
Portmanteau tests are typically used to test serial independence even if, by construction, they are generally powerful only in presence of pairwise dependence between lagged variables. In this article, we present a simple statistic defining a new serial independence test, which is able to detect more general forms of dependence. In particular, differently from the Portmanteau tests, the resulting test is powerful also under a dependent process characterized by pairwise independence. A diagram, based on p-values from the proposed test, is introduced to investigate serial dependence. Finally, the effectiveness of the proposal is evaluated in a simulation study and with an application on financial data. Both show that the new test, used in synergy with the existing ones, helps in the identification of the true data-generating process. Supplementary materials for this article are available online.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1264314 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:72:y:2018:i:3:p:219-238
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2016.1264314
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().