EconPapers    
Economics at your fingertips  
 

Comparing Objective and Subjective Bayes Factors for the Two-Sample Comparison: The Classification Theorem in Action

Mithat Gönen, Wesley O. Johnson, Yonggang Lu and Peter H. Westfall

The American Statistician, 2019, vol. 73, issue 1, 22-31

Abstract: Many Bayes factors have been proposed for comparing population means in two-sample (independent samples) studies. Recently, Wang and Liu presented an “objective” Bayes factor (BF) as an alternative to a “subjective” one presented by Gönen et al. Their report was evidently intended to show the superiority of their BF based on “undesirable behavior” of the latter. A wonderful aspect of Bayesian models is that they provide an opportunity to “lay all cards on the table.” What distinguishes the various BFs in the two-sample problem is the choice of priors (cards) for the model parameters. This article discusses desiderata of BFs that have been proposed, and proposes a new criterion to compare BFs, no matter whether subjectively or objectively determined. A BF may be preferred if it correctly classifies the data as coming from the correct model most often. The criterion is based on a famous result in classification theory to minimize the total probability of misclassification. This criterion is objective, easily verified by simulation, shows clearly the effects (positive or negative) of assuming particular priors, provides new insights into the appropriateness of BFs in general, and provides a new answer to the question, “Which BF is best?”

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1322142 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:1:p:22-31

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2017.1322142

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:73:y:2019:i:1:p:22-31