Randomization Inference for Outcomes with Clumping at Zero
Luke Keele and
Luke Miratrix
The American Statistician, 2019, vol. 73, issue 2, 141-150
Abstract:
While randomization inference is well developed for continuous and binary outcomes, there has been comparatively little work for outcomes with nonnegative support and clumping at zero. Typically, outcomes of this type have been modeled using parametric models that impose strong distributional assumptions. This article proposes new randomization inference procedures for nonnegative outcomes with clumping at zero. Instead of making distributional assumptions, we propose various assumptions about the nature of the response to treatment and use permutation inference for both testing and estimation. This approach allows for some natural goodness-of-fit tests for model assessment, as well as flexibility in selecting test statistics sensitive to different potential alternatives. We illustrate our approach using two randomized trials, where job training interventions were designed to increase earnings of participants.
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1385535 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:2:p:141-150
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2017.1385535
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().