A Primer on Visualizations for Comparing Populations, Including the Issue of Overlapping Confidence Intervals
Tommy Wright,
Martin Klein and
Jerzy Wieczorek
The American Statistician, 2019, vol. 73, issue 2, 165-178
Abstract:
In comparing a collection of K populations, it is common practice to display in one visualization confidence intervals for the corresponding population parameters θ1, θ2, …, θK. For a pair of confidence intervals that do (or do not) overlap, viewers of the visualization are cognitively compelled to declare that there is not (or there is) a statistically significant difference between the two corresponding population parameters. It is generally well known that the method of examining overlap of pairs of confidence intervals should not be used for formal hypothesis testing. However, use of a single visualization with overlapping and nonoverlapping confidence intervals leads many to draw such conclusions, despite the best efforts of statisticians toward preventing users from reaching such conclusions. In this article, we summarize some alternative visualizations from the literature that can be used to properly test equality between a pair of population parameters. We recommend that these visualizations be used with caution to avoid incorrect statistical inference. The methods presented require only that we have K sample estimates and their associated standard errors. We also assume that the sample estimators are independent, unbiased, and normally distributed.
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1392359 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:2:p:165-178
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2017.1392359
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().