Teaching Bayes’ Theorem: Strength of Evidence as Predictive Accuracy
Jeffrey N. Rouder and
Richard D. Morey
The American Statistician, 2019, vol. 73, issue 2, 186-190
Abstract:
Although teaching Bayes’ theorem is popular, the standard approach—targeting posterior distributions of parameters—may be improved. We advocate teaching Bayes’ theorem in a ratio form where the posterior beliefs relative to the prior beliefs equals the conditional probability of data relative to the marginal probability of data. This form leads to an interpretation that the strength of evidence is relative predictive accuracy. With this approach, students are encouraged to view Bayes’ theorem as an updating mechanism, to obtain a deeper appreciation of the role of the prior and of marginal data, and to view estimation and model comparison from a unified perspective.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1341334 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:2:p:186-190
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2017.1341334
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().