EconPapers    
Economics at your fingertips  
 

Teaching Bayes’ Theorem: Strength of Evidence as Predictive Accuracy

Jeffrey N. Rouder and Richard D. Morey

The American Statistician, 2019, vol. 73, issue 2, 186-190

Abstract: Although teaching Bayes’ theorem is popular, the standard approach—targeting posterior distributions of parameters—may be improved. We advocate teaching Bayes’ theorem in a ratio form where the posterior beliefs relative to the prior beliefs equals the conditional probability of data relative to the marginal probability of data. This form leads to an interpretation that the strength of evidence is relative predictive accuracy. With this approach, students are encouraged to view Bayes’ theorem as an updating mechanism, to obtain a deeper appreciation of the role of the prior and of marginal data, and to view estimation and model comparison from a unified perspective.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1341334 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:2:p:186-190

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2017.1341334

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:73:y:2019:i:2:p:186-190